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Resonance  gas oscillations in a tube, one end of  which has an oscillating piston and the other of  which is 

open to the environment,  are considered. A semi-empirical  model  of  resonance oscillations ii: a long tube 

under  conditions o f  weakly developed turbulence is constructed. The boundary condition at the open end is 

calculated analytically. The relations obtained are compared to experiment.  

Resonance oscillations are known to develop in a tube at one end of which a harmonically oscillating piston 

is placed and whose other  end is open to the environment.  The oscillations are accompanied by the formation of 

an oscillating jet at the open end, by flow turbulization, and by other  nonlinear effects [ l -4  ]. The  interest  in such 

systems is maintained due to their widespread use in technology. 

The  development of a quantitative theory of the phenomenon is restricted by the complexity of the boundary  

condition at the open end [5-7 ] and the poor investigation of oscillating turbulent flows inside a tube [8 I. Recently,  

we managed to show [9 ] that the boundary  condition can be found analytically if the concept of the jet character  

of efflux and spherical inflow into a tube is used I10]. To model inler tube turbulence an approach is suggested 

[11 1 that is based on linearization of turbulent  shear  stress on the wall. One of the first models [121 includes the 

presence of an empirical coefficient in the boundary  condition and assumptions of quasistationarity of an oscillating 

flow and the absence of heat  exchange between the gas in a tube and the wall. 

In what follows, we attempt to construct a model of resonance oscillations under  turbulent  conditions that 

is free of the constraints mentioned. 

Oscillations in a long cylindrical tube ( L / R  >> 1) that are excited by the harmonic motion of a piston with 

amplitude l 0 << L are characterized by dimensionless parameters [7, 8, 10, 12, 13 ]: 

v 
e - w - -  L ,  H = R  , S h -  ~ - ,  M p -  ~oo ' R e ° " - ° J v "  

(1) 

The  condition /0 << L with oscillation on the base frequency provides Mp << 1. In the case most interest ing for 

practice, H >> 1, Sh < 1. The  latter condition for L / R  >> 1 results in e << 1, i.e., the problem can be solved by the 

perturbation method. Let turbulence be weakly developed. Then the universal profile of velocity fluctuations appears 

only in a thin layer near  the wall [8 ]. 

Nonisoentropic gas oscillations in the tube can be described by the system [14 ] 

2 
o (pU)s a (pu)~ ap 2r 

at + ox + ~ + -g  o ,  

Op Op 0% 2 & - 1) q 
0---[ + us -g-£x + x p O x R - O . 

(2) 

Equations of the first (acoustic) approximations are presented as 
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0Uls OPl 2Z 1 
+ a-T= 

OPl 20Ul s  2 (to - 1) ql 
0--7- + PoC° 0~-  - R (3) 

The relation between the amplitude of shear stress on the wall and maximum amplitude of velocity fluctuations has 

the form [8, 15] 

0 0 2 
Tim = PO/w (Ulm) / 2 .  (4) 

In the case of weakly developed turbulence, fw ~ 0.005 [8 ]. With resonance oscillations U0m is a function of the 

axial coordinate; therefore,  expression (4) should be linearized. We use the method involving replaccmcnL of the 

parabola section (U0m)2 by the straight-line section fl0uOm with the condition that the areas undcr  both lines are 

equal [ 11 ]. Then we have 

o o 
Zlm = POflOUlm ' flO = fw v / 3  " (5)  

In (5), the fact that the limiting value of U0m in the open-end tube is at tained at the open end, where uOm(L) = V, 

is taken into account. 

It may be taken as established [8, 15 ] that under the conditions of weakly developed turbulence the profile 

of the amplitude of velocity fluctuations is uniform everywhere except for the layer of thickness 61, where the 

distribution of the amplitude of velocity fluctuations is universal, i.e., 

+ y+ 
u I = 2.5 In + 5 .0 .  (6) 

We take the relation between oscillations of shear  stress on the wall and velocity fluctuations to have the form 

7:1 = p o f l U t s ,  fl  = f l o / B  . (7) 

Strictly speaking, there is a phase difference (I)* between rl and Uls that can be allowed for by replacing/3 by/3* = 

fl exp ( i~*) .  
To determine ql we assume that 

ql = - / 3 T P l  (8) 

and introduce the thicknesses of dynamic acoustic and oscillating temperature  boundary  layers 

61 = ~/2,Ue/poo9 , C~T1 = 4 7-)te/POCpW , (9) 

In the adopted model,  b 1 << R, dtth 1 << R; therefore,  in the expressions 

0T 1 ~u 1 
ql = )re ~ - r  w '  T 1 = -- I% Or w (10) 

the derivatives can be replaced by increment ratios. Then,  with allowance for (7), (8), (10), and the condition that 

on the tube wall Ul = 0, Tl = 0, we can write 

'~cTlm/~3thl ~ flthPl , ,Uc/3 ~ POt3 ,  ( l l )  

It can be easily shown that beyond the boundary- layer  limits Pl ~- p o c p T l m  • Then  it follows from (11) that 

fi,h = fi / 4 V i q  . (12)  
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Let (3) be written in a dimensionless form assuming Pl = Pl/P0C~, Uls = Uls/C0- Then,  with allowance for 

(7), (8), (12), we have 

1 O~ls CqPl 1 0~ l O~ls ( X -  1 )  

- -  = - -  a ~ l s  , - -  - -  

2 / w V  
- - a P l  , a = - -  

3 BRc 0 
- - - -  + - - - -  + ( 1 3 )  

c o Ot Ox c o Ot Ox x/Pr~ 

The  solutions of system (13) have the form 

Pl = rl cos (kx + a I +//31) exp (i (cot + ~0)), 

Uls = - irl Iti sin (kx + a 1 + q31) exp (i (cot + ~ + ~ol) ) , ( t4 )  

where rl ,  Ctl, ill ,  ~P are integration constants; l~l, 991 are the module and the main value of the argument  of the 

expression [ k  / ( k 0  - ia) ], with 

k 2 2 ( ( x - ' ) ) a 2 ( X - 1 )  (15) 
= k  o - i a k  0 I + pr  t - pr  t 

Under  the conditions of [7 ], a < 0.05k0; therefore, with high accuracy 

1)) ( i s ' )  
k ~  k O - i b ,  b =  ( a / 2 )  1 + pr  t ) . 

We formulate the boundary  conditions. At the end closed by the piston, the piston velocity should be 

assigned, which in dimensionless form is [13] 

Uls (0, t) = - i Mp exp ( ~ t ) .  (16) 

We consider an oscillatory process near  the open end of the tube provided with an infinite flange. Let at 

some distance from the outlet section (AA' in Fig. 1) the particle velocity be 

u = V c o s w t .  (17) 

We take the model of [10] assuming jet efflux (u >_ 0) and spherical inflow (u _< 0) into the sink positioned at 

point O. The  gas flowing from the tube is confined within the volume of the body with generatr ixes BE and B'E'. 

Since the mixing layer does not succeed in substantially developing near  the open end, the jet cross-section area 

remains practically constant and equals the tube cross-section area So. Then  the gas velocity is also independent  

of x. 

Inflow to the tube is achieved through hemispheres BB' and CC'. It can be easily shown [16 ] that the effect 

of viscous losses in suction is inessential. Then  we can assume that gas inflow is potential and the hemispheres  are 

isotachs. The  quanti ty of gas crossing the hemispheres is constant; therefore,  for the hemisphere of an arb i t rary  

radius x, the relation 

u (x, t) = • (x) u* ( t ) ,  • (x) = R2/x 2 (18) 

is valid, where * refers to hemisphere BB' drawn through the tube edges (x = R). 
f t 

Consider  the efflux through section DD and the suction through hemisphere BB.  By virtue of the mass 

conservation law, the quantity of ejected gas should be compensated for by its return through BB,  i.e., 

t T 
S O f Uls(t) dt + s f  u*(t) d t = O ,  

0 t 

(19) 
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Fig. 1. Schematic of flow. 

where S -- 2xR 2. Since S > So, for (19) to be valid the duration of the efflux t' should be more than the durat ion 

of the suction. This is possible if the velocity has a constant increment.  Assuming the lat ter  to be proportional  to 

the ampli tude of velocity fluctuations V, we have 

u =  V(m o + c o s , o t ) ,  x = R ,  (20) 

where m0 is an unknown parameter .  

We find the efflux duration t' from the condition u = 0. Then we have 

u l s ( 7  ) = B V ( m  o + c o s T ) ,  - (0.5;r + ~o) _<7-< (0.SJr + ~o); 

u* ( 7 )  = V ( m  O + c o s t ) ,  (0.&r+~o)_<7___ ( 0 . & r - T ) ,  (21) 

where T = arcsin m0; B = u ° s / V  is the parameter  allowing for flow displacement  by the boundary  layer.  Substi tut ing 

(21) into (19) can easily give 

(B + 2) m 0at + 2 (B - 2) (m 0 arcsin m 0 + sin arccos m0) = 0 .  (22) 

To determine B it is enough to average the ampli tude of velocity fluctuations over the tube cross section, i.e., to 

integrate the uniform profile with ampli tude V from 0 to (R - 61) and profile (6) from (R - 61) to R. 

With weakly developed turbulence (105 < Re,, < 6-105), the thickness 61 is found by the formula 

c51R ~ O.O154V/wR.  (23) 

As a result we have 

B = 1 - ( c ln  R %  + d) ( V / w R ) ,  (24) 

where c -- -0 .00385 ;  d = 0.0546. Calculation shows that in the exper iments  of [7 ], corresponding to the problem 

at hand,  the equality B --- 0.93 is fulfilled with an accuracy to 1 ~ .  To this value of B corresponds  m 0 = 0.239. 

We consider  oscillations of particles crossing, e.g., cross section EE' (Fig. 1), assuming the flow to be 

potential [17 ]. In efflux the velocity is determined by (20) and in suction by (18), according to which the velocity 

decreases rapidly with the growth of x. Expanding the velocity into Fourier series, we have 

= M E {(0.Sin 0 + ao) + (0.5m o - ao) • (x) + [(0.5 + al)  + 

+ (0.5 - a l )  • (x)] c o s T +  a 2 (1 - • (x)) cos 2~+  . . .},  (25) 

o_ 0 =  ( l / J r ) ( m o T  + c o s T ) ,  a I = ( 1 / ~ ) ( T  + 2m 0 c o s f , - 0 . s s i n 2 T ) ,  

a 2 = ( l / X )  [ c o s T - m  o s i n 2 T -  (1 /3 )  c o s 3 T l ,  M E =  V/c  o,  -u= u / c  o. 
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In the case of a tube without  a f lange,  the funct ion ~ ( x )  is de t e rmined  by  the formula  

( x )  = R 2 / [ x  2 + (x - R) 2 + 0 . 5 n R  (x - R) 1. (26) 

An analys is  shows that  substant ia l  changes  in ~i are  faster  for  the f lange- f ree  tube and  s top at a d i s tance  x = 3R. 

Star t ing  f rom x -~ 5 R ,  the composi t ion  of oscil lations stops d e p e n d i n g  on  x and  on the geomet ry  of the open  end.  

T h e n  we have 

Too = M E [(0.Sin o + %) + (0.5 + a l ) c o s t  + a 2 cos ~ + . . .1.  (27) 

T h e  flow in which particle velocity is de t e rmined  by (25), (27) is an  osci l lat ing jet. T h e  L a g r a n g e - C a u c h y  in tegra l  

can be applied to it: 

-P-- + ~ -  + = c o n s t ,  (28) 
Po 

where ,  accord ing  to the est imate,  the th i rd  term has the o r d e r  of Sh. Apply ing  (28) to two cross sect ions  (e.g., 

AA'  and  E E ' ,  Fig. 1) u n d e r  the a s sumpt ion  that  the pressure  in sect ion E E '  is equal to a tmospher i c  p ressure  a n d  

the velocity is de t e rmined  by (17) a nd  (27),  respectively,  we have,  a f te r  s imple t r ans fo rmat ions ,  

Pl (L ,  t) _ 0 -  (L ,  t) m = m l / B  2 ,  (29) 
= mUls  Uls 

where  ml = (0.5 + al)  (0.5rno + a0 + 0.5a2).  U n d e r  the cons idered  condi t ions  with B --- 0.93, mo = 0.239,  we have 

ml = 0.361. 

We place solut ions (14) into (16) a nd  (29); then to de t e rmine  r l ,  g', a l ,  and  fll we obtain  the sy s t em of 

equat ions  

r I sin cr I cosh fll = Mp cos (~p + ~ol) , r I cos a 1 cosh/31 = - Mp sin OP + ~o|),  

2 
cos z cosh w = t a p i r  I ~/sin 2 z + s inh 2 w (cos z s inh w cos ~o I + sin z cosh w sin ~0), 

s i n z s i n h w =  m/~ 2 ~/sin 2 z + s i n h  2 w  ( s i n z c o s h w c o s ~ o  I - c o s z s i n h w s i n ~ p )  lrl  

z =  k o L  + a 1,  w = fl l  - b L ,  (30) 

which for  sin ~Ol - e  °, s inh  w - e  O, rl _~o  (eO<< 1), cos ~o 1 ~ 1 ,  cosh w ~ | ,  ,u I ----- 1 admi t s  the  solut ions  

a 1 = ~ / 2  -- k L ,  f l l  = al L + m r l  , (31) 

the ampl i tude  r I is found  f rom the equat ion 

r I [cos 2 k o L  + (bL  + mrl)  2 sin 2 k o L ]  | / 2  = Mp. (32) 

By vir tue of (13), (15 ' ) ,  we have b L  = C r l / B  2, where  C = (1 /3)fw[1 + ( x -  1) /dPr-  t ]; then with an  accura te  

r esonance  k o L  ~ J r / 2  for d imens ionless  ampl i tude  of oscil lations we obta in  

r I = B C L / R  + m 1 

In  the  b o u n d a r y  layer  of s ta t ionary  tu rbu len t  flows, Prt ~ 0.9 [18 ]. Assuming  this value of Pr  t acceptable  for  the  

case of oscil lating flows as well, we find C = 0.002369. 
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Fig. 2. Dependence of dimensionless amplitude of oscillations rl on Mp: points 

- experiment [7] [1) L / R  = 171; 2) 129; 3) 891; curves - theory (33). 

Fig. 3. Dependence of the coefficient of amplification on the tube length (m): 

poin ts  - e x p e r i m e n t  [7];  solid curve  - c a l c u l a t i o n  by  (34) at  l0 = 

5.53 .10  -3 m; dashed line - experiment [19 ]. L, m. 

The  points in Fig. 2 indicate the experimenta ! data of [7 ], relating to the conditions of weakly developed 

turbulence, in the form of r I --  r I ( M p )  and the results of calculations by (33). It is seen that the coincidence of the 

data is ra ther  satisfactory: the deviation of points from calculations does not exceed 4%.  Scatter of data is caused, 

as follows from (33), by the change in L / R .  

Resonance properties are well manifested in comparing the amplitude of velocity fluctuations V at the open 

end with the amplitude of piston velocity fluctuations [19 ]. We formulate the relation N = V/u-~l s (0) with allowance 

for V = r l c o / B  and u--~l s = :~loco/2L. Then  we have 

N =  ~-[o m i  + L / R  " 

In Fig. 3, the points show experimental  results of [71, and the solid curve indicates the results of calculation 

by (34). It is seen that as L increases, the value of N asymptotically tends to a constant value dependent  on the 

tube radius (at l 0 ~ const). A similar phenomenon was observed in [ 191 (the dashed curve in Fig. 3); the numerical 

values of N in [19 ] turn out to be 10% higher than those calculated. 

Thus ,  an analytical solution of the problem of resonance oscillations in a tube with an open end under  

conditions of weakly developed turbulence has been obtained for the first time. 

N O T A T I O N  

10, amplitude of piston motion; L, tube length; R, radius; co, sound velocity in unper turbed gas; p ,  dynamic 

viscosity; v, kinematic viscosity; 2, thermal conductivity; co, cyclic frequency of oscillations; Sh, Strouhal  number;  

M, Mach number;  t, time; T, period of oscillations on frequency ~o; t', efflux duration; x, axial coordinate;  y, 

distance from the tube wall; 61, thickness of the acoustic dynamic boundary  layer; 6~hl, thickness of oscillating 

temperature boundary layer; V, maximum amplitude of velocity fluctuations at the open end; p, pressure;  u, axial 

velocity; ~ ,  velocity at a distance from the open end; p,  density; T1, temperature  fluctuations; x = Cp/Cv; Cp, cv, 

specific heats; k, wave number;  k 0 = ~o/co; T, shear  stress on the wall; q, heat flux densi ty on the wall; y+ = 
v*y/v; u~ 0 * = u l / v  ; v*, shear  stress rate; fw, friction coefficient; Prt = CpPe/2e, turbulent  Prandt l  number;  2e = 

0 0 uOs(L)/V; velocity potential. Subscripts: O, unper tu rbed  flow; 1 ,,1. + 2t, Pe = ~t + / t t ;  B = Uls/Ulm; B L = ~o*, 
oscillations at frequency w; 2, oscillations at frequency 2w; s, averaging over the tube cross section; m, maximum 

value in the given cross section; e, effective (total) value; l, turbulent value; th, thermal; w, value on the wall; p, 

piston; E, closed end. Superscripts: 0, corresponds to the amplitude; bar denotes dimensionalizalion. 
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