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RESONANCE GAS OSCILLATIONS IN A TUBE WITH
AN OPEN END UNDER WEAKLY DEVELOPED
TURBULENCE

R. G. Galiullin, é R. Galiuliina, and UDC §32.517.4; 534.213
E. I. Permyakov

Resonance gas oscillations in a tube, one end of which has an oscillating piston and the other of which is
open to the environment, are considered. A semi-empirical model of resonance oscillations i « long tube
under conditions of weakly developed turbulence is constructed. The boundary condition at the open end is
calculated analytically. The relations obtained are compared to experiment.

Resonance oscillations are known to develop in a tube at one end of which a harmonically oscillating piston
is placed and whose other end is open to the environment. The oscillations are accompanied by the formation of
an oscillating jet at the open end, by flow turbulization, and by other nonlinear effects [1-4]. The interest in such
systems is maintained due to their widespread use in technology.

The development of a quantitative theory of the phenomenon is restricted by the compliexity of the boundary
condition at the open end {5-7]and the poor investigation of oscillating turbulent flows inside a tube (8 ]. Recently,
we managed to show [9] that the boundary condition can be found analytically if the concept of the jet character
of efflux and spherical inflow into a tube is used [10). To medel intertube turbulence an approach is suggested
[11] that is based on linearization of turbulent shear stress on the wall. One of the first models [12] includes the
presence of an empirical coefficient in the boundary condition and assumptions of quasistationarity of an oscillating
flow and the absence of heat exchange between the gas in a tube and the wall.

In what follows, we attempt to construct a model of resonance oscillations under turbulent conditions that
is free of the constraints mentioned.

Oscillations in a long cylindrical tube (L/R >> 1) that are excited by the harmonic motion of a piston with
amplitude lg << L are characterized by dimensionless parameters {7, 8, 10, 12, 13]:
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The condition [y << L with oscillation on the base frequency provides My << 1. In the case most interesting for
practice, H >> 1, Sh < 1. The latter condition for L/R >> 1 results in ¢ << 1, i.e., the problem can be solved by the
perturbation method. Let turbulence be weakly developed. Then the universal profile of velocity fluctuations appears
only in a thin layer near the wall [8].

Nonisoentropic gas oscillations in the tube can be described by the system [14]
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Equations of the first (acoustic) approximations are presented as
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The relation between the amplitude of shear stress on the wall and maximum amplitude of velocity fluctuations has
the form [8, 15]

0 0 .2
Tim =pOfw (ulm) /2. (4)

In the case of weakly developed turbulence, f, = 0.005 [8]. With resonance oscillations u(l)m is a function of the
axial coordinate; therefore, expression (4) should be linearized. We use the method involving replacement of the
parabola section (u(])m)2 by the straighi-line section ,Bou?m with the condition that the areas under both lines are
equal [11]). Then we have

0 0
Tlm=p0ﬂ0ulm’ ﬁ0=wa/3- (5)

In (5), the fact that the limiting value of u?m in the open-end tube is attained at the open end, where u?m (L) =Y,
is taken into account.

It may be taken as established [8, 15] that under the conditions of weakly developed turbulence the profile
of the amplitude of velocity fluctuations is uniform everywhere except for the layer of thickness 8;, where the
distribution of the amplitude of velocity fluctuations is universal, i.e.,

uj =2.5Iny" +50. (6)
We take the relation between oscillations of shear stress on the wall and velocity fluctuations to have the form
1y =poPurs, B=Po/B. D
Strictly speaking, there is a phase difference ®* between t; and u that can be allowed for by replacing 8 by f* =
B exp (d*).
To determine g, we assume that
q, = — By ®)

and introduce the thicknesses of dynamic acoustic and oscillating temperature boundary layers

Oy =VY2u/pyw , O =V U/poc,w ©))
In the adopted model, 8y << R, 8,1 << R; therefore, in the expressions
aT, duy
h=te57| 0 U= e (10)
w w

the derivatives can be replaced by increment ratios. Then, with allowance for (7), (8), (10), and the condition that
on the tube wall 4y =0, T| = 0, we can write

AT im Oy & Bubrs /0= pof, (1)
It can be easily shown that beyond the boundary-layer limits p; = pgc,T 1. Then it follows from (11) that

Bun = B/VPr,. (12)
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Let (3) be written in a dimensionless form assuming p; = pl/poc%, ujs = uys/ cg- Then, with allowance for
N, 8, (12), we have

lﬂ+35—‘=—aals,lf”—ﬁ—‘+aﬂ‘s=—('c_1)aﬁ,,a=3fwv. (13)
cg Ot ax cg Of dx VPr, 3 BRc,
The solutions of system (13) have the form
p, = rycos (kx + a; + i) exp (i (wl + ¥)),
Uy = —irppysin (hx + ap + By exp (i (wt + y + ¢y)), (14

where ry, ay, B1, ¥ are integration constants; 4, ¢; are the module and the main value of the argument of the
expression [k / (kg — ia) ], with

K = k2 — iak, (Hi'%;rt—‘l) -, (15)

Under the conditions of [7], a < 0.05kg; therefore, with high accuracy

kS ky—ib, b= (a/2) (1+L’fp;rtll). (157

We formulate the boundary conditions. At the end closed by the piston, the piston velocity should be
assigned, which in dimensionless form is [13]

uys (0, ) = — i M exp (iw?) . (16)

We consider an oscillatory process near the open end of the tube provided with an infinite flange. Let at
some distance from the outlet section (A4  in Fig. 1) the particle velocity be

u=Vcoswt. (17

We take the model of [10] assuming jet efflux (u = 0) and spherical inflow (x < 0) into the sink positioned at
point O. The gas flowing from the tube is confined within the volume of the body with generatrixes BE and B'E.
Since the mixing layer does not succeed in substantially developing near the open end, the jet cross-section area
remains practically constant and equals the tube cross-section area Sp. Then the gas velocity is also independent
of x.

Inflow to the tube is achieved through hemispheres BB and CC'. It can be easily shown [16 ] that the effect
of viscous losses in suction is inessential. Then we can assume that gas inflow is potential and the hemispheres are
isotachs. The quantity of gas crossing the hemispheres is constant; therefore, for the hemisphere of an arbitrary
radius x, the relation

wix, ) =0 ) u (1), Ox) =R/ (18)

is valid, where * refers to hemisphere BB drawn through the tube edges (x = R).
Consider the efflux through section DD’ and the suction through hemisphere BB'. By virtuc of the mass
conservation law, the quantity of ejected gas should be compensated for by its return through BB, ie.,

t' T
So S ug(dt+S[ u (dt=0, (19)
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Fig. 1. Schematic of flow.

where S = 21R2. Since S > S, for (19) to be valid the duration of the efflux ¢ should be more than the duration
of the suction. This is possible if the velocity has a constant increment. Assuming the latter to be proportional to
the amplitude of velocity fluctuations V, we have

u=V(my+coswt), x=R, (20)

where mg is an unknown parameter.
We find the efflux duration ¢' from the condition « = 0. Then we have

u (1) =BV (my+cost), — (0.5 +¢) <1< (057 + ¢);
u (1) =V(my+cost), (051 +¢) <1< (0.51 — p), 21

where ¢ = arcsin mg; B = u?s/ V is the parameter allowing for flow displacement by the boundary layer. Substituting
(21) into (19) can easily give

(B +2) myn + 2 (B — 2) (mg arcsin mg + sin arccos mg) = 0. (22)

To determine B it is enough to average the amplitude of velocity fluctuations over the tube cross section, i.e., to
integrate the uniform profile with amplitude V from 0 to (R — d{) and profile (6) from (R — ;) to R.
With weakly developed turbulence (10° < Re, < 6- 10%), the thickness d; is found by the formula

;R = 0.0154V/wR . (23)
As a result we have
B=1-(clnRe, + d) (V/wR), (24)

where ¢ = —0.00385; d = 0.0546. Calculation shows that in the experiments of [7], corresponding to the problem
at hand, the equality B = 0.93 is fulfilled with an accuracy to 1%. To this value of B corresponds mg = 0.239.

We consider oscillations of particles crossing, e.g., cross section EE (Fig. 1), assuming the flow to be
potential [17]. In efflux the velocity is determined by (20) and in suction by (18), according to which the velocity
decreases rapidly with the growth of x. Expanding the velocity into Fourier series, we have

u= Mg {(0.5m0 + ag) + (0.5mg — ag) @ (x) + [(0.5 + a)) +

+ (0.5 — a)) P (x)] cos 1 + a, (1 — D (x)) cos 21 + } ; (25)

ag = (1/m) (mgp + cos ¢), a; = (1/7) (p + 2mgcos ¢ — 0.5 sin 29) ,

ay = (1/7) [cos ¢ — mysin 29 — (1/3) cos 3p], Mp = V/¢cy, u=u/cy.
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In the case of a tube without a flange, the function ®(x) is determined by the formula

@ (x) = R/ (x> + (x = R + 0.57R (x — R)]. (26)

An analysis shows that substantial changes in u; are faster for the flange-free tube and stop at a distance x = 3R.
Starting from x = SR, the compaosition of oscillations stops depending on x and on the geometry of the open end.
Then we have

Ty = Mg [(0.5my + ag) + (0.5 + @)) cos { + aycos 21 + ...]. (27)

The flow in which particle velocity is determined by (25), (27) is an oscillating jet. The Lagrange—Cauchy integral
can be applied to it:

2 *
P u 0 _ 28
o + o) + Y, const , ( )

where, according to the estimate, the third term has the order of Sh. Applying (28) to two cross sections (e.g.,
AA  and EE', Fig. 1) under the assumption that the pressure in section EE is equal to atmospheric pressure and
the velocity is determined by (17) and (27), respectively, we have, after simple transformations,

By (L, 1) = ma- Gy (Lo 1), m=m /B 29

where m = (0.5 + a1)(0.5mg + ag + 0.5a3). Under the considered conditions with B = 0.93, mg = 0.239, we have

my = 0.361.
We place solutions (14) into (16) and (29); then to determine ry, ¥, «;, and f; we obtain the system of

equations

ry sin ay cosh By = M, cos (¥ + ¢y), rjcosa;cosh By = — Mysin (y + ¢y),

2 - - . . .
cos z cosh w = mu,r Vsin? z + sinh?® w (cos z sinh w cos ¢, + sin z cosh w sin ) ,

sin z sinh w = mu | Vsin? z + sinh® w (sin z cosh w cos ¢ — cos z sinh w sin ) ,

z=kol+a,, w=p, —bL, (30)

which for sin ¢ ~eO, sinh w ~e°, n ~e0 (0 << 1}, cos p; = 1, cosh w = 1, g; = 1 admits the solutions

ay=n/2— kL, By =aL+ mr, (31)
the amplitude r| is found from the equation

ry [cos” koL + (BL + mry)’ sin” koL % = M, . (32)

By virtue of (13), (15", we have bL = Crl/Bz, where C = (1/3)f,{1 +( — 1)/VPr]; then with an accurate
resonance kgL = s/2 for dimensionless amplitude of oscillations we obtain

M
g =B\/[CL/R+m1]‘ (33

In the boundary layer of stationary turbulent flows, Pr; = 0.9 [18]. Assuming this value of Pr; acceptable for the
casc of oscillating flows as well, we find C = 0.002369.
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Fig. 2. Dependence of dimensionless amplitude of oscillations r; on M,: points
— experiment [7] [1) L/R =171; 2) 129; 3) 89]; curves — theory (33).

Fig. 3. Dependence of the coefficient of amplification on the tube length (m):
points — experiment [7]; solid curve — calculation by (34) at [y =
5.53-10% m; dashed line — experiment [19]. L, m.

The points in Fig. 2 indicate the experimental data of [7], relating to the conditions of weakly developed
turbulence, in the form of r| = r|(My) and the results of calculations by (33). It is seen that the coincidence of the
data is rather satisfactory: the deviation of points from calculations does not exceed 49%,. Scatter of data is caused,
as follows from (33), by the change in L/R.

Resonance properties are well manifested in comparing the amplitude of velocity fluctuations V at the open
end with the amplitude of piston velocity fluctuations [19]. We formulate the relation N =¥/ E(l)s (0) with allowance
for V=rycy/B and E(l)s = mlycy/2L. Then we have

/(2 L
N= \/(nzo my + CL/R) ' (34)

In Fig. 3, the points show experimental results of {7}, and the solid curve indicates the results of calculation
by (34). It is seen that as L increases, the value of N asymptotically tends to a constant value dependent on the
tube radius (at /; = const). A similar phenomenon was observed in [19] (the dashed curve in Fig. 3); the numerical
values of N in [19] turn out to be 10% higher than those calculated.

Thus, an analytical solution of the problem of resonance oscillations in a tube with an open end under
conditions of weakly developed turbulence has been obtained for the first time.

NOTATION

lg, amplitude of piston motion; L, tube length; R, radius; ¢y, sound velocity in unperturbed gas; #, dynamic
viscosity; v, kinematic viscosity; 4, thermal conductivity; w, cyclic frequency of oscillations; Sh, Strouhal number;
M, Mach number; ¢, time; T, period of oscillations on frequency w; ¢, efflux duration; x, axial coordinate; y,
distance from the tube wall; 8,, thickness of the acoustic dynamic boundary layer; d;;, thickness of oscillating
temperature boundary layer; V, maximum amplitude of velocity fluctuations at the open end; p, pressure; u, axial
velocity; u, velocity at a distance from the open end; p, density; T, temperature fluctuations; « = cp/cv; Cps Cv
specific heats; k, wave number; kg = w/cq; 7, shear stress on the wall; g, heat flux density on the wall; y+ =
Viy/vy uf = u?/v‘; V", shear stress rate; fy, friction coefficient; Pry = cpue/Ae, turbulent Prandtl number; 4, =
A+, pe =u+uy; B = u(l)s/u(l)m; By = u(l)s(L)/V; ¢*, velocity potential. Subscripts: 0, unperturbed flow; 1,
oscillations at frequency w; 2, oscillations at frequency 2w; s, averaging over the tube cross section; m, maximum
value in the given cross section; e, effective (total) value; 1, turbulent value; th, thermal; w, value on the wall; p,
piston; E, closed end. Superscripts: 0, corresponds to the amplitude; bar denotes dimensionalization.
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